أرشيف المدونة الإلكترونية

صور المظاهر بواسطة MichaelJay. يتم التشغيل بواسطة Blogger.
أقسام المدونة :

الخميس، 8 أكتوبر 2015

Unconventional reserves of Hydrocarbons

Unconventional reserves of Hydrocarbons

Oil that can be extracted from reserves in the porous and permeable reservoir rocks of oil traps. Such reserves have come to be known as conventional reserves, because accessing them uses technology that has been around for years. In the past 10 to 15 years, energy companies have begun to increase their focus on extracting hydrocarbons from unconventional reserves, meaning reserves that had previously been left in the ground or disposed of because they cannot be tapped without using new technologies. Let’s look at a few examples of these reserves. 

Natural Gas 

Natural gas consists of volatile, short-chain hydrocarbon molecules (methane, ethane, propane, and butane). Gas burns more cleanly than oil, in that combustion of gas produces only CO2 and water, while the burning of oil not only produces CO2 and water, but also complex organic pollutants. Thus, natural gas has become the preferred fuel for home cooking and heating, and in some localities, for electricity production. It can also be used to run cars and trucks, if the vehicles have been appropriately modified. Natural gas has not yet been used as widely as other hydrocarbons, because gas transportation, which requires high-pressure pipelines or special ships, is quite expensive. But its use is increasing rapidly. As we have seen, gas often occurs in association with oil. Unfortunately, at many oil wells, it is not economical to capture and transport the gas, so this gas vents from a pipe and is burned in a flare where it enters the air. (In localities where rock has been heated to temperatures higher than the oil window, reservoir rock may contain only gas and there may be enough to be worth pumping and capturing by conventional means.) Recently, the use of directional drilling and hydraulic fracturing has made it possible to extract large quantities of gas directly from source rocks. Large reserves of such shale gas underlie states in the northeastern United States, and are currently being drilled to provide energy for east-coast cities (Box 12.2). Intense exploration for shale gas reserves has begun worldwide.

Tar Sands (Oil Sands) 


So far, we’ve focused our discussion on hydrocarbon reserves that can be pumped from the subsurface in the form of a liquid or gas. But in several locations around the world, most notably Alberta (in western Canada) and Venezuela, vast reserves of very viscous, tar-like “heavy oil” exist. This heavy oil, known also as bitumen, has the consistency of gooey molasses, and thus cannot be pumped directly from the ground. It fills the pore spaces of sand or of poorly cemented sandstone, constituting up to 12% of the sediment or rock volume. Sand or sandstone containing such high concentrations of bitumen is known as tar sand or oil sand. Production of usable oil from tar sand is difficult and expensive, but not impossible. It takes about 2 tons of tar sand to produce one barrel of oil. Oil companies mine near-surface deposits in vast open-pit mines and then heat the tar sand in a furnace to extract the oil. Producers then crack the heavy oil molecules to produce smaller, more usable molecules. Trucks dump the drained sand back into the mine pit. To extract oil from deeper deposits of tar sand, oil companies drill wells and pump steam or solvents down into the sand to liquefy the oil enough so that it can be pumped out. 

Oil Shale 


Vast reserves of organic shale have not been subjected to temperatures of the oil window, or if they were, they did not stay within the oil window long enough to complete the transformation to oil. Such rock still contains a high proportion of kerogen. Shale that contains at least 15% to 30% kerogen is called oil shale. Lumps of oil shale can be burned directly and thus have been used as a fuel since ancient times. In general, however, energy companies produce liquid oil from oil shale. The process involves heating the oil shale to a temperature of 500nC; at this temperature, the shale decomposes and the kerogen transforms into liquid hydrocarbon and gas. As is the case with tar sand, production of oil from oil shale is possible, but very expensive.
>
ليست هناك تعليقات:
Write التعليقات

Interested for our works and services?
Get more of our update !