أرشيف المدونة الإلكترونية

صور المظاهر بواسطة MichaelJay. يتم التشغيل بواسطة Blogger.
أقسام المدونة :

الثلاثاء، 23 يونيو 2015

Taxa used in biostratigraphy

No single group of organisms fulfils all the criteria for the ideal zone fossil and a number of different groups of taxa have been used for defining biozones through the stratigraphic record. Some, such as the graptolites in the Ordovician and Silurian, are used for worldwide correlation; others are restricted in use to certain facies in a particular succession, for example corals in the Carboniferous of northwest Europe. Some examples of taxonomic groups used in biostratigraphy are outlined below.

Marine macrofossils

The hard parts of invertebrates are common in sedimentary rocks deposited in marine environments throughout the Phanerozoic. These fossils formed the basis for the divisions of the stratigraphic column into Systems, Series and Stages in the 18th and 19th centuries. The fossils of organisms such as molluscs, arthropods, echinoderms, etc., are relatively easy to identify in hand specimen, and provide the field geologist with a means for establishing the age of rocks to the right period or possibly epoch. Expert palaeontological analysis of marine macrofossils provides a division of the rocks into stages based on these fossils.

Trilobites


These Palaeozoic arthropods are the main group used in the zonation of the Cambrian. Most trilobites are thought to have been benthic forms living on and in the sediment of shallow marine waters. They show a wide variety of morphologies and appear to have evolved quite rapidly into taxa with distinct and recognisable characteristics. They are only locally abundant as fossils.

Graptolites


These exotic and somewhat enigmatic organisms are interpreted as being colonial groups of individuals connected by a skeletal structure. They appear to have had a planktonic habit and are widespread in Ordovician and Silurian mudrocks. Preservation is normally as a thin film of flattened organic material on the bedding planes of fine-grained sedimentary rocks. The shapes of the skeletons and the ‘teeth’ where individuals in the colony were located are distinctive when examined with a hand lens or under a microscope. Lineages have been traced which indicate rapid evolution and have allowed a high-resolution biostratigraphy to be developed for the Ordovician and Silurian systems. The main drawback in the use of graptolites is the poor preservation in coarser grained rocks such as sandstones.

Brachiopods


Shelly, sessile organisms such as brachiopods generally make poor zone fossils but in shallow marine, high-energy environments where graptolites were not preserved, brachiopods are used for regional correlation purposes in Silurian rocks and in later Palaeozoic strata. 

Ammonoids 


This taxonomic group of cephalopods (phylum Mollusca) includes goniatites from Palaeozoic rocks as well as the more familiar ammonites of the Mesozoic. The nautiloids are the most closely related living group. The large size and free-swimming habit of these cephalopods made them an excellent group for biostratigraphic purposes. Fossils are widespread, found in many fully marine environments, and they are relatively robust. Morphological changes through time were to the external shape of the organisms and to the ‘suture line’, the relic of the bounding walls between the chambers of the coiled cephalopod. Goniatites have been used in correlation of Devonian and Carboniferous rocks, whereas ammonites and other ammonoids are the main zone fossils in Mesozoic rocks. Ammonoids became extinct at the end of the Cretaceous.

Gastropods


These also belong to the Mollusca and as marine ‘snails’ they are abundant as fossils in Cenozoic rocks. They are very common in the deposits of almost all shallow marine environments. Distinctive shapes and ornamentation on the calcareous shells make identification relatively straightforward and there are a wide variety of taxa within this group.

Echinoderms


This phylum includes crinoids (sea lilies) and echinoids (sea urchins). Most crinoids probably lived attached to substrate and this sessile characteristic makes them rather poor zone fossils, despite their abundance in some Palaeozoic limestones. Echinoids are benthic, living on or in soft sediment: their relatively robust form and subtle but distinctive changes in their morphology have made them useful for regional and worldwide correlation in parts of the Cretaceous.

Corals


The extensive outcrops of shallow marine limestones in Devonian and Lower Carboniferous (Mississippian) rocks in some parts of the world contain abundant corals. This group is therefore used for zonation and correlation within these strata, despite the fact that they are not generally suitable for biostratigraphic purposes because of the very restricted depositional environments they occur in.

Marine microfossils
Microfossils are taxa that leave fossil remains that are too small to be clearly seen with the naked eye or hand lens. They are normally examined using an optical microscope although some forms can be analysed in detail only using a scanning electron microscope. The three main groups that are used in biostratigraphy are the foraminifers, radiolaria and calcareous algae (nanofossils): other microfossils used in biostratigraphy are ostracods, diatoms and conodonts.

Foraminifera


'Forams' (the common abbreviation of foraminifers) are single-celled marine organisms that belong to the Protozoa Subkingdom. They have been found as fossils in strata as old as the Cambrian, although forms with hard calcareous shells, or ‘tests’, did not become well established until the Devonian. Calcareous forams generally became more abundant through the Phanerozoic and are abundant in many Mesozoic and Cenozoic marine strata. The calcareous tests of planktonic forams are typically a millimetre or less across, although during some periods, particularly the Paleogene, larger benthic forms also occur and can be more than a centimetre in diameter. Planktonic forams make very good zone fossils as they are abundant, widespread in marine strata and appear to have evolved rapidly. Schemes using forams for correlation in the Mesozoic and Cenozoic are widely used in the hydrocarbon industry because microfossils are readily recovered from boreholes and both regional and worldwide zonation schemes are used.

Radiolaria


These organisms form a subclass of planktonic protozoans and are found as fossils in deep marine strata throughout the Phanerozoic. Radiolaria commonly have silica skeletons and are roughly spherical, often spiny organisms less than a millimetre across. They are important in the dating of deep-marine deposits because the skeletons survive in siliceous oozes deposited at depths below the CCD. These deposits are preserved in the stratigraphic record as radiolarian cherts and the fossil assemblages found in them typically contain large numbers of taxa making it possible to use quite high resolution biozonation schemes. Their stratigraphic range is also greater than the forams, making them important for the dating of Palaeozoic strata.

Calcareous nanofossils

Fossils that cannot be seen with the naked eye and are only just discernible using a high-power optical microscope are referred to as nanofossils. They are microns to tens of microns across and are best examined using a scanning electron microscope. The most common nanofossils are coccoliths, the spherical calcareous cysts of marine algae. Coccoliths may occur in huge quantities in some sediments and are the main constituent of some fine-grained limestones such as the Chalk of the Upper Cretaceous in northwest Europe. They are found in fine-grained marine sediments deposited on the shelf or any depths above the CCD below which they are not normally preserved. They are used biostratigraphically in Mesozoic and Cenozoic strata.

Other microfossils
Ostracods are crustaceans with a two-valve calcareous carapace and their closest relatives are crabs and lobsters. They occur in a very wide range of depositional environments, both freshwater and marine, and they have a long history, although their abundance and distribution are sporadic. Zonation using ostracods is applied only locally in both marine and non-marine environments. Diatoms are chrysophyte algae with a siliceous frustule (skeleton) that can occur in large quantities in both shallow-marine and freshwater settings. The diatom frustules are less than a millimetre across and in some lacustrine settings may make up most of the sediment, forming a diatomite deposit. They are only rarely used in biostratigraphy. Conodonts are somewhat enigmatic tooth like structures made of phosphate and they occur in Palaeozoic strata. Despite uncertainty about the origins, they are useful stratigraphic microfossils in the older Phanerozoic rocks, which generally contain few other microfossils. Acritarchs are microscopic spiny structures made of organic material that occur in Proterozoic and Palaeozoic rocks. Their occurrences in Precambrian strata make them useful as a biostratigraphic tool in rocks of this age. They are of uncertain affinity, although are probably the cysts of planktonic algae, and may therefore be related to dinoflagellates, which are primitive organisms found from the Phanerozoic through to the present day and also produce microscopic cysts (dinocysts). Zonation based on dinoflagellates is locally very important, especially in non-calcareous strata of Mesozoic and Cenozoic ages: the schemes used are generally geographically local and have limited stratigraphic ranges.

Terrestrial fossil groups used in biostratigraphy

Correlation in the deposits of continental environments is always more difficult because of the poorer preservation potential of most materials in a subaerial setting. Only the most resistant materials survive to be fossilised in most continental deposits, and these include the organo-phosphates that vertebrate teeth are made of and the coatings of pollen, spores and seeds of plants. Stratigraphic schemes have been set up using the teeth of small mammals and reptiles for correlation of continental deposits of Neogene age. Pollen, spores and seeds (collectively palynomorphs) are much more commonly used. They are made up of organic material that is highly resistant to chemical attack and can be dissolved out of siliceous sedimentary rocks using hydrofluoric acid. Airborne particles such as pollen, spores and some seeds may be widely dispersed and the occurrence of these aeolian palynomorphs within marine strata allows for correlation between marine and continental successions. However, although palynomorphs can be used as zone fossils, they rarely provide such a high resolution as marine fossils. Identification is carried out with an optical microscope or an electron microscope after the palynomorphs have been chemically separated from the host sediment using strong acids.
>
ليست هناك تعليقات:
Write التعليقات

Interested for our works and services?
Get more of our update !