صور المظاهر بواسطة MichaelJay. يتم التشغيل بواسطة Blogger.
أقسام المدونة :

السبت، 21 مارس 2015

Obsidian

What is Obsidian?

Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimal crystal growth. Obsidian is commonly found within the margins of rhyolitic lava flows known as obsidian flows, where the chemical composition (high silica content) induces a high viscosity and polymerisation degree of the lava. The inhibition of atomic diffusion through this highly viscous and polymerised lava explains the lack of crystal growth. Obsidian is hard and brittle; it therefore fractures with very sharp edges, which were used in the past in cutting and piercing tools, and it has been used experimentally as surgical scalpel blades.

Origin and properties of obsidian

Obsidian is the rock formed as a result of quickly cooled lava, which is the parent material. Tektites were once thought by many to be obsidian produced by lunar volcanic eruptions, though few scientists now adhere to this hypothesis.
Obsidian is mineral-like, but not a true mineral because as a glass it is not crystalline; in addition, its composition is too complex to comprise a single mineral. It is sometimes classified as a mineraloid. Though obsidian is usually dark in colour similar to mafic rocks such as basalt, obsidian's composition is extremely felsic. Obsidian consists mainly of SiO2 (silicon dioxide), usually 70% or more. Crystalline rocks with obsidian's composition include granite and rhyolite. Because obsidian is metastable at the Earth's surface (over time the glass becomes fine-grained mineral crystals), no obsidian has been found that is older than Cretaceous age. This breakdown of obsidian is accelerated by the presence of water. Having a low water content when newly formed, typically less than 1% water by weight, obsidian becomes progressively hydrated when exposed to groundwater, forming perlite.
Pure obsidian is usually dark in appearance, though the colour varies depending on the presence of impurities. Iron and other transition elements may give the obsidian a dark brown to black colour. Very few samples are nearly colourless. In some stones, the inclusion of small, white, radially clustered crystals of cristobalite in the black glass produce a blotchy or snowflake pattern (snowflake obsidian). Obsidian may contain patterns of gas bubbles remaining from the lava flow, aligned along layers created as the molten rock was flowing before being cooled. These bubbles can produce interesting effects such as a golden sheen (sheen obsidian). An iridescent, rainbow-like sheen (rainbow obsidian) is caused by inclusions of magnetite nanoparticles.

Colour of obsidian

Obsidian mainly forms of black colour however this colour is not the only one but is the most common colour. It can also be of different colours like brown, tan or green. Rare colours of obsidian can also be blue, red, orange or yellow. The colour of obsidian is thought to be from the trace elements. Two colours can also be found at a single obsidian where black and brown are the most common to occur being associated at a single rock body. Rarely obsidian can be of iridescent where are called as rainbow obsidian, golden obsidian or silver obsidian.

Occurrence of obsidian 

Obsidian can be found in locations which have experienced rhyolitic eruptions. It can be found in Argentina, Armenia, Azerbaijan, Australia, Canada, Chile, Georgia, Greece, El Salvador, Guatemala, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Papua New Guinea, Peru, Scotland, Turkey and the United States. Obsidian flows which may be hiked on are found within the calderas of Newberry Volcano and Medicine Lake Volcano in the Cascade Range of western North America, and at Inyo Craters east of the Sierra Nevada in California. Yellowstone National Park has a mountainside containing obsidian located between Mammoth Hot Springs and the Norris Geyser Basin, and deposits can be found in many other western U.S. states including Arizona, Colorado, New Mexico, Texas, Utah, Washington, Oregon and Idaho. Obsidian can also be found in the eastern U.S. states of Virginia, as well as Pennsylvania and North Carolina.
There are only four major deposit areas in the central Mediterranean: Lipari, Pantelleria, Palmarola and Monte Arci. Ancient sources in the Aegean were Melos and Giali. Acigöl town and the Göllü Dağ volcano were the most important sources in central Anatolia, one of the more important source areas in the prehistoric Near East.

Stability of obsidian

Obsidian is a glass where lava flow solidifies rapidly forming no crystalline structure but it is also not stable at this form and with time begins forming crystals not at the whole rock body but at different parts of the obsidian. It is not at a regular time interval so great time is required to get obsidian crystalline form.

Composition

Most obsidians have a composition similar to rhyolite and granite. Granites and rhyolites can form from the same magma as obsidian and are often geographically associated with the obsidian.
Rarely, volcanic glasses are found with a composition similar to basalt and gabbro. These glassy rocks are named "tachylyte."

Volcanic glasses other than obsidian

Pumice, scoria, and tachylyte are other volcanic glasses formed by rapid cooling. Pumice and scoria differ from obsidian by having abundant vesicles - cavities in the rock produced when gas bubbles were trapped in a solidifying melt. Tachylyte differs in composition - it has a composition similar to basalt and gabbro.

Where Does Obsidian Form?

Obsidian is usually an extrusive rock - one that solidifies above Earth's surface. However, it can form in a variety of cooling environments:
  • along the edges of a lava flow (extrusive)
  • along the edges of a volcanic dome (extrusive)
  • around the edges of a sill or a dike (intrusive)
  • where lava contacts water (extrusive)
  • where lava cools while airborne (extrusive) 

Uses of Obsidian

Historical use

The first known archaeological evidence of usage was in Kariandusi and other sites of the Acheulian age (beginning 1.5 million years BP) dated 700,000 BC, although the number of objects found at these sites were very low relative to the Neolithic. Use of obsidian in pottery of the Neolithic in the area around Lipari was found to be significantly less at a distance representing two weeks journeying. Anatolian sources of obsidian are known to have been the material used in the Levant and modern-day Iraqi Kurdistan from a time beginning sometime about 12,500 BC. The first attested civilised use is from excavations at Tell Brak dated the late fifth millennia. Obsidian was valued in Stone Age cultures because, like flint, it could be fractured to produce sharp blades or arrowheads. Like all glass and some other types of naturally occurring rocks, obsidian breaks with a characteristic conchoidal fracture. It was also polished to create early mirrors. Modern archaeologists have developed a relative dating system, obsidian hydration dating, to calculate the age of obsidian artefacts. Obsidian is used as a cutting tool because of its conchoidal fracturing where it breaks into thin sheets and have sharp edges. In stone age obsidian was used as a cutting tool for making any sharp tool and it is still used as a cutting tool in modern surgeries. It is also used as a jewellery by making beads of obsidian.

Uses of Obsidian as a Cutting Tool

The conchoidal fracture of obsidian causes it to break into pieces with curved surfaces. This type of fracturing can produce rock fragments with very sharp edges. These sharp fragments may have prompted the first use of obsidian by people.
The first use of obsidian by people probably occurred when a sharp piece of obsidian was used as a cutting tool. People then discovered how to skillfully break the obsidian to produce cutting tools in a variety of shapes. Obsidian was used to make knives, arrowheads, spear points, scrapers, and many other weapons and tools.
Once these discoveries were made, obsidian quickly became the raw material of preference for producing almost any sharp object. The easy-to-recognise rock became one of the first targets of organised "mining." It is probably a safe bet that all natural obsidian outcrops that are known today were discovered and utilised by ancient people.

Obsidian in Modern Surgery

Although using a rock as a cutting tool might sound like "stone age equipment," obsidian continues to play an important role in modern surgery. Obsidian can be used to produce a cutting edge that is thinner and sharper than the best surgical steel. Today, thin blades of obsidian are placed in surgical scalpels used for some of the most precise surgery. In controlled studies, the performance of obsidian blades was equal to or superior to the performance of surgical steel.

Uses of Obsidian in Jewellery

Obsidian is a popular gemstone. It is often cut into beads and cabochons or used to manufacture tumbled stones. Obsidian is sometimes faceted and polished into highly reflective beads. Some transparent specimens are faceted to produce interesting gems.
The use of obsidian in jewellery can be limited by its durability. It has a hardness of about 5.5 which makes it easy to scratch. It also lacks toughness and is easily broken or chipped upon impact. These durability concerns make obsidian an inappropriate stone for rings and bracelets. It is best suited for use in low-impact pieces such as earrings, brooches, and pendants.
Obsidian is also used in making opal doublets and opal triplets. Thin slices or chips of opal are glued to a thin slice of obsidian to make a composite stone. The black obsidian provides an inexpensive and colour-contrasting background that makes opal's colourful fire much more obvious. It also adds mass and stability to the opal that facilitates cutting it into a gem.

Other Uses

Freshly broken pieces of obsidian have a very high luster. Ancient people noticed that they could see a reflection in obsidian and used it as a mirror. Later, pieces of obsidian were ground flat and highly polished to improve their reflective abilities.
Obsidian's hardness of 5.5 makes it relatively easy to carve. Artists have used obsidian to make masks, small sculptures, and figurines for thousands of years.
>
ليست هناك تعليقات:
Write التعليقات

Interested for our works and services?
Get more of our update !